A real-time variable-q non-stationary Gabor transform for pitch shifting
نویسندگان
چکیده
This paper proposes a real-time variable-Q non-stationary Gabor transform (VQ-NSGT) system for speech pitch shifting. The system allows for time-frequency representations of speech on variable-Q (VQ) with perfect reconstruction and computational efficiency. The proposed VQ-NSGT phase vocoder can be used for pitch shifting by simple frequency translation (transposing partials along the frequency axis) instead of spectral stretching in frequency domain by the Fourier transform. In order to retain natural sounding pitch shifted speech, a hybrid of smoothly varying Q scheme is used to retain the formant structure of the original signal at both low and high frequencies. Moreover, the preservation of transients of speech are improved due to the high time resolution of VQ-NSGT at high frequencies. A sliced VQ-NSGT is used to retain inter-partials phase coherence by synchronized overlap-add method. Therefore, the proposed system lends itself to real-time processing while retaining the formant structure of the original signal and inter-partial phase coherence. The simulation results showed that the proposed approach is suitable for pitch shifting of both speech and music signals.
منابع مشابه
Some New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملAudio Pitch Shifting Using the Constant-Q Transform
Pitch shifting of polyphonic music is usually performed by manipulating the time-frequency representation of the input signal. Most approaches proposed in the past are based on the Fourier transform although its linear frequency bin spacing is known to be inadequate to some degree for analyzing and processing music signals. Recently invertible constant-Q transforms (CQT) featuring high Q-factor...
متن کاملPitch Shifting of Audio Signals Using the Constant-q Transform
Pitch-scale modifications of polyphonic music are usually performed by manipulating the time-frequency representation of the input signal. Most approaches proposed in the past are thereby based on the Fourier transform although its linear frequency bin spacing is known to be inadequate to some degree for analysing and processing music signals. Recently invertible constant-Q transforms (CQT) fea...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملSynchrosqueezing-based Transform and its Application in Seismic Data Analysis
Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some resear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015